

Triple Constellations GNSS Module for GPS/GLONASS/Galileo satellites

PGL-1613 Specification

Version 1.0 2022/04/15

This document contains information highly confidential to KNCTEK Company LTD (KNCTEK). It is provided for the sole purpose of the business discussions between specific Users and KNCTEK and is covered under the terms of the applicable Non-Disclosure Agreements. Disclosure of this information to other parties is prohibited without the written consent of KNCTEK.

KNCTEK Company LTD.

6F03, Ace High-End Tower 6th, 60-25, Gasan-dong, Geumcheon-gu SEOUL, KOREA

> TEL: 82-2-839-5701 FAX: 82-2-830-5703

E-Mail: knc3@knctek.co.kr http://www.knctek.co.kr

PGL-1613 Specification

REVISION HISTORY	3
INTRODUCTION	
PRODUCT FEATURES	4
PRODUCT APPLICATIONS	4
PRODUCT PICTURE	5
PGL-1613 SYSTEM BLOCK DIAGRAM	5
TECHNICAL SPECIFICATION	6
RECOMMENDED GPS/GLONAS/Galileo ACTIVE EXTERNAL ANTENNA	8
MECHANICAL PIN LAYOUT	9
RECOMMENDED LAND PATTERN DIMENSION	9
HARDWARE INTERFACE	10
DEFINITION OF PIN ASSIGNDMENT	11
PACKING INFORAMTION	14
GPS/GLONASS/Galileo RECEIVER USER'S TIP	15
NMEA PROTOCOL	16
CONTACT INFORMATION SECTION	25

Revision History

1. 2022-04-15 : Initiated Version 1.0.

PGL-1613 Operational Manual

INTRODUCTION

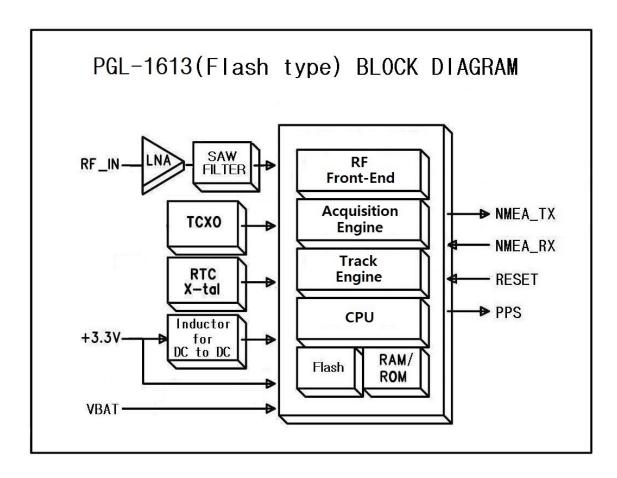
The **PGL-1613** is the newest generation of KNCTEK's Triple Constellation GPS/GLONASS/Galileo Module. The Triple Constellation GPS/GLONASS/Galileo Module is powered by SkyTraq technology and KNCTEK proprietary navigation algorithm that provide you more stable navigation data. The miniature design is the best choice to be embedded in a portable device various Trackers, Vehicle & personal Locaters and etc. The excellent sensitivity of **PGL-1613** gets the great performance when going though the urban canyon and foliage environmental condition.

PRODUCT FEATURES

- GPS, GLONASS, Galileo, QZSS, SBAS(WAAS, MSAS, EGNOS, GAGAN)
 supported
- ♦ 230 Acquisition & Tracking Channels
- ♦ Operable from 3.3V/Typ 62mA for Acquisition and 48mA for Tracking Mode
- ♦ Signal Detection better than -165dBm in Ultra High Tracking Sensitivity
- ♦ Enhanced Cold Acquisition Sensitivity at -148dBm and Reacquisition at -160dBm
- 28 seconds Warm start and 29 seconds Cold start TTFF under open sky average
- ♦ Advanced Multipath detection and suppression
- → Jamming detection and mitigation
- ♦ SAEE(Self-aided ephemeris estimation) Supported
- ♦ Excellent Sensitive for Urban Canyon and Foliage Environmental condition
- ♦ NMEA-0183 compliant protocol
- ♦ Automotive-grade Quality GPS/GLONASS/Galileo solution
- ♦ Small form factor (15.9X13.1X2.4mm)
- ♦ ODM/OEM development is fully supported Application Engineering
- ♦ RoHS compliant

PRODUCT APPLICATION

- Automotive applications
- ♦ Speed camera detector and Data logger
- ♦ Personal and Car Navigation Devices
- ♦ Marine navigation
- ♦ Timing application and the others


PRODUCT PICTURE

PGL-1613 SYSTEM BLOCK DIAGRAM

The PGL-1613 consists of SkyTraq chipsets Technology, KNCTEK LNA and proprietary software. The system is described as follows.

TECHNICAL SPECIFICATION

1. Electrical Characteristics

1.1 Absolute Maximum Rating

Parameter	Symbol	Min	Max	Units
Power Supply				
Power Supply Volt.	VCC	-0.3	3.6	V
Input Pins				
Input Pin Voltage I/O	RX	-0.3	3.6	V
Backup Battery	Vbat	-0.3	3.6	V
Environment				
Operating Temperature	Topr	-30	85	°C
Storage Temperature	Tstg	-40	85	°C
Peak Reflow Soldering Temperature < 10S	Tpeak		260	°C

Note: Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stress beyond the limits specified in this table may affect device reliability or cause permanent damage to the device.

For functional operating conditions, please refer to the operating conditions tables as follow.

1.2 Operating Condition

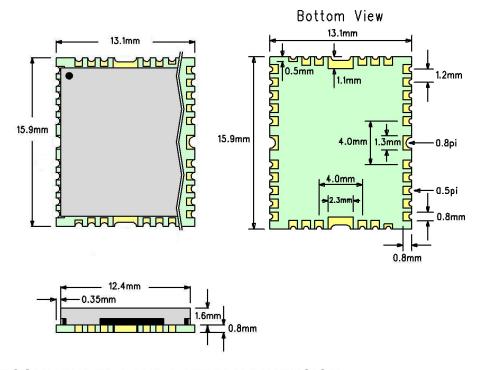
Parameter	Symbol	Condition	Min	Тур	Max	Units
Power supply voltage	Vcc		3.0	3.3	3.6	V
Power Supply voltage ripple	Vcc_PP	Vcc = 3.3V			50	mV
Acquisition current	IccA	Vcc = 3.3V		62		mA
Tracking current	IccT	Vcc = 3.3V		48		mA
Input high voltage	V _{IH}		2.0			V
Input low voltage	V _{IL}				0.8	V
Output high voltage	V _{OH}		2.4			V
Output low voltage	V_{OL}				0.4	V

2. General Performance Specification

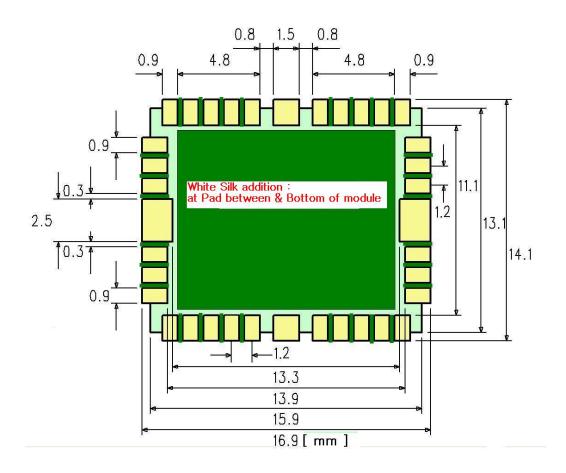
Parameter	Specification	
Receiver Type	GPS/GLONASS/Galil	eo, 230 Acquisition & Tracking Channels
Sensitivity	Tracking	-165dBm
	Re-acquisition	-160dBm
	Cold Start	-148dBm
Accuracy	Position	2.0m CEP
	Velocity	0.1m/s
	Timing(PPS)	12ns RMS
Acquisition Time	Cold Start	29 sec. typical (Open sky¹)
	Warm Start	28 sec. typical (Open sky)
	Hot Start	1 sec. typical (Open sky)
	Reacquisition Time	1 sec(Open sky, re-appear
		after some seconds)
Power Consumption	Tracking	48mA @ 3.3V
	Acquisition	62mA @ 3.3V
	Back-up	15uA @ 3V
Navigation Data Update	1Hz_Default	In case of using Binary input : Max 25Hz
Rate	** Please refer to the	Binary Input Message
Operational Limits	Velocity	Max 515 m/s
	Altitude	Max 18,000m
	Acceleration	Less than 4g(39.2m/sec ²)
Mechanical data	Dimension	15.9 X 13.1 X 2.4mm (+/- 0.3mm
	Weight	1.0grams ±5%
Protocol	NMEA-0183 V3.01	GNGGA 1Hz
		GNGLL 1Hz
		GNGSA 1Hz
		GPGSV 1/3Hz(one time per 3sec)
		GLGSV 1/3Hz
		GAGSV 1/3Hz
		GNRMC 1Hz
		GNVTG 1Hz
		GNZDA 1Hz

^{** &}lt;sup>1</sup>Open Sky means no obstructions in the sky

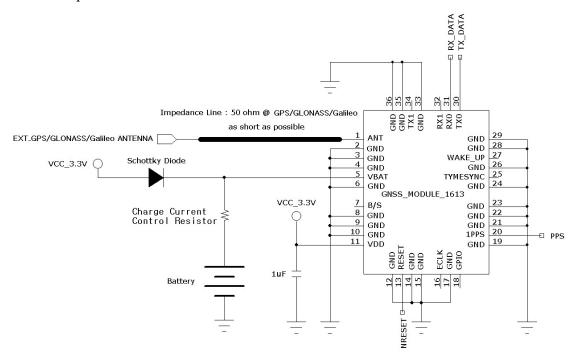
RECOMMENDED GPS/GLONASS/Galileo ACTIVE EXTERNAL ANTENNA

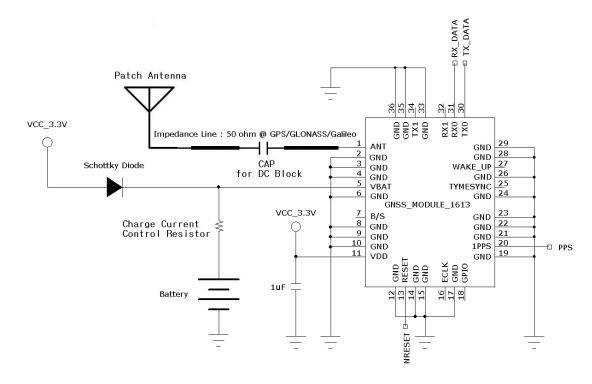

It's recommended to use a GPS/GLONASS/Galileo active external antenna with supply voltage of 3.3VDC and a current draw of 20mA maximum. The quality of the GPS/GLONASS/Galileo active external antenna chosen is of paramount importance for the overall sensitivity of the GPS/GLONASS/Galileo system. A GPS/GLONASS/Galileo active external antenna should have a typical gain 20dB and a noise figure ≤ 1.5dB, which applies to more than 90% of the antennas available in the market.

3.3V GPS/GLONASS/Galileo Active External Antenna Specification


Characteristics	Specification
Center Frequency	GPS/Galileo : 1575.42MHz, GLONASS : 1602±4MHz
Gain at Zenith	2.0dBi Typical
VSWR	2.0 : 1 Max
Polarization	R.H.C.P
Gain	Typical 20dB(>15dB)
Noise Figure	Less than 1.5dB
Out Band Attenuation	20dB min for ±50MHz
Voltage	3.3 ± 10%VDC or 3.0 ~ 3.6 VDC
Current	≤ 20 mA

MECHANICAL PIN LAYOUT


RECOMMENDED LAND PATTERN DIMENSION



HARDWARE INTERFACE

1. Example 1 for GPS/GLONASS/Galileo External Active Antenna

2. Example 1 for GPS/GLONASS/Galileo Patch Antenna

DEFINITION OF PIN ASSIGNDMENT

	SIGNAL		ASSIGNDIVIENT	
PIN	NAME	1/0	DESCRIPTION	CHARACTER
			GPS/GLONASS/Galileo SIGNAL	50Ω Impedance Line @
1	ANT	I	INPUT	GPS/GLONASS/Galileo
			IN OT	/ 3.2V Bias output for Active Antenna
2	GND	GND	Ground	
3	GND	GND	Ground	
4	GND	GND	Ground	
5	VBAT	I	Backup Battery supply, must not be unconnected	DC +1.3V ~ +3.6V
6	GND	GND	Ground	
7	NC	-	Not connecting	
8	GND	GND	Ground	
9	GND	GND	Ground	
10	GND	GND	Ground	
11	VDD	I	DC Power Supply Voltage input	DC +3.3V ±10%
12	GND	GND	Ground	
13	RESET	I	RESET(Active LOW)	Active LOW
14	GND	GND	Ground	
15	GND	GND	Ground	
16	MODE(NC)		Not connecting	
17	GND	GND	Ground	
18	STATUS(NC)	-	Not connecting	
19	GND	GND	Ground	
20	1PPS	0	1 Pulse per Second	When getting 3D position fix, output is ok
21	GND	GND	Ground	
22	GND	GND	Ground	
23	GND	GND	Ground	
24	GND	GND	Ground	
25	NC		Not connecting	
26	GND	GND	Ground	
27	NC		Not connecting	
28	GND	GND	Ground	
29	GND	GND	Ground	

30	TX0	0	UART Serial Data Output: NMEA TX	3.3V LVTTL
31	RX0	I	UART Serial Data Input	3.3V LVTTL
32	RX1(NC)	-	Not connecting	
33	GND	GND	Ground	
34	TX1(NC)	-	Not connecting	
35	GND	GND	Ground	
36	GND	GND	Ground	

ANT

The Module supports passive & active antennas. The line on the PCB from the antenna(or antenna connector)has to be a controlled line (Micro strip at 50Ω @ GPS/GLONASS/Galileo signal).

The input provides also a bias supply(+3.2V typ.).

VBAT

This is the battery backup supply that powers the SRAM and RTC when main power is removed. The input voltage level is from 1.3V ~ 3.6V. Without an external backup battery or on board battery, engine board will execute a cold start after every turn on. To achieve the faster start-up offered by a hot or warm start, either a backup battery must be connected or battery installed on board. This pin must be connected by power(normal Input power) for operating, must not be unconnected.

VDD(DC Power Input)

This is the main power supply for the Engine board. The power range is from $3.3V \pm 10\%$ (the maximum and minimum voltage is 3.0V to 3.6V). Suitable decoupling must be provided by external decoupling circuitry.

GND

GND provides the ground for the Engine board. Connect all grounds.

RESET

This is the function to restart the system, If the pin is lied to low.

Only needed when power supply rise time is very slow or software controlled reset is desired. Leave unconnected if not used.

1PPS

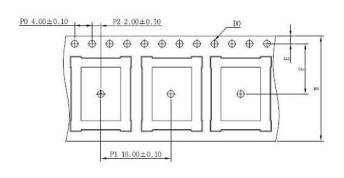
This pin is one pulse per second time-mark output, 3.3V LV-TTL.

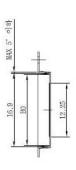
The rising edge synchronized to UTC second when getting 3D position fix. The pulse duration is about 100msec at rate 1Hz.

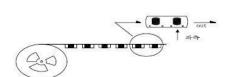
TXD

UART serial data output, 3.3V LVTTL logic level. This is the main transmit channel and is normally used for sending position, time and velocity information from the receiver in NMEA-0183 format. The default setup is NMEA Output, 9600bps, 8 data bits, no parity, 1 stop bit. The default sentences are GNGGA, GNGLL, GNGSA, GPGSV, GLGSV, GAGSV, GNRMC, GNVTG, GNZDA.

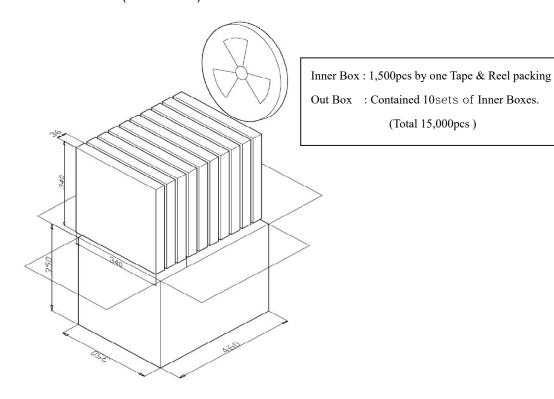
GNGGA, GNGLL, GNGSA, GNRMC, GNVTG, GNZDA are once per second and GPGSV, GLGSV, GAGSV is once per 3 second.


RXD


UART serial data input, 3.3V LVTTL logic level. This is the main receiving channel and is used to receive software commands to the Engine board from user written software.


Packing Information

1. Carrier Tape Dimension


13.7 MAX 5° 0|8| A0

Taping style

Α0	13,40±0,10	E	1.75±0.10
ΒO	16.60±0.10	F	11.50±0.10
ΚO	2.70±0.10	t	0.30±0.05
DΟ	1,55±0,05	W	24.00±0.30

2. Inner & Out Box (Carton Box)

GPS/GLONASS/Galileo Receiver User's Tip

- GPS/GLONASS/Galileo signal will be affected by weather and environment conditions, thus suggest you to use the GPS/GLONASS/Galileo receiver under less shielding environments to ensure GPS/GLONASS/Galileo receiver has better receiving performance.
- When GPS/GLONASS/Galileo receiver is moving, it will prolong the time to fix the position, so suggest to wait for the satellite signals to be locked at a fixed point when first power-on the GPS/GLONASS/Galileo receiver to ensure to lock the GPS/GLONASS/Galileo signal at the shortest time.
- 3. The following situation will affect the GPS/GLONASS/Galileo receiving performance:
 - a. Solar control filmed windows.
 - b. Metal shielded, such as umbrella, or in vehicle.
 - c. Among high buildings.
 - d. Under bridges or tunnels.
 - Under high voltage cables or nearby radio wave sources, such as mobile phone base stations.
 - f. Bad or heavy cloudy weather.
- 4. If the satellite signals cannot be locked or encounter receiving problem (while in the urban area), the following steps are suggested:
 - a. Please plug the external active antenna into GPS/GLONASS/Galileo receiver and put the antenna on outdoor or the roof of the vehicle for better receiving performance.
 - b. Move to another open space or reposition GPS/GLONASS/Galileo receiver toward the direction with fewer blockages.
 - c. Move the GPS/GLONASS/Galileo receiver away from the interference resources.
 - d. Wait until the weather condition is improved.

While a GPS/GLONASS/Galileo with a backup battery, the GPS/GLONASS/Galileo receiver can fix a position immediately at next power-on if the build-in backup battery is full-recharged.

NMEA Protocol Overview

The output protocol supports NMEA-0183 standard. The implemented message include GGA, GLL, GSA, GSV, VTG, RMC, ZDA messages. The NMEA message output has the following sentence structure:

\$aaccc,c-c*hh<CR><LF>

The detail of the sentence structure is explained in Table 1.

Table 1: The NMEA sentence structure

character	HEX	Description	
"\$"	24	Start of sentence	
Aaccc		Address field. "aa" is the talked identifier. "ccc" identifies the	
		sentence type	
"",	2C	Field delimiter	
С-с		Data sentence block	
"*"	2A	Checksum delimiter	
Hh		Checksum field.	
<cr><lf></lf></cr>	0D0A	Ending of sentence. (carriage return, line feed)	

Table 2 : Overview of NMEA messages

\$GNGGA	Time, position, and fix related data of the receiver.
\$GNGLL	Position, time and fix statue.
\$GNGSA	Used to represent the ID's of satellites which are used for position fix. When
	GPS satellites are used for position fix, \$GNGSA sentence is output with
	system ID 1. When GLONASS satellites are used for position fix, \$GNGSA
	sentence is output with system ID 2. When Galileo satellites are used for
	position fix, \$GNGSA sentence is output with system ID 3.
\$GPGSV	Satellite information about elevation, azimuth and CNR, \$GPGSV is used for
\$GLGSV	GPS satellites, while \$GLGSV is used of GLONASS satellites, while \$GAGSV
\$GAGSV	is used of Galileo satellites
\$GNRMC	Time, date, position, course and speed data.
\$GNVTG	Course and speed relative to the ground
\$GNZDA	UTC, day, month and year and time zone.

GGA - Global Positioning System Fix Data

Time, position and fix related data for a GPS receiver.

Structure:

1 2 3 4 56789 10 11 12 13

Example:

\$GNGGA,111636.932,2447.09495,N,12100.52235,E,1,11,0.8,118.2,M,21.3,M,,0000*02<CR><LF>

Field	Name	Example	Description
1	UTC Time	111636.932	UTC of position in hhmmss.sss format, (000000.000
			~ 235959.999)
2	Latitude	2447.09495	Latitude in ddmm.mmmmm format
			Leading zeros transmitted
3	N/S Indicator	N	Latitude hemisphere indicator, 'N' = North,
			'S' = South
4	Longitude	12100.52235	Longitude in dddmm.mmmmm format
			Leading zeros transmitted
5	E/W Indicator	E	Longitude hemisphere indicator, 'E' = East, 'W' =
			West
6	GPS quality	1	GPS quality indicator
	indicator		0: position fix unavailable
			1: valid position fix, SPS mode
			2: valid position fix, differential GPS mode
			3: GPS PPS Mode, fix valid
			4: Real Time Kinematic. System used in RTK mode
			with fixed integers
			5: Float RTK. Satellite system used in RTK mode.
			Floating integers
			6: Estimated (dead reckoning) Mode
7	Satellites Used	11	Number of satellites in use, (00 ~ 24)
8	HDOP	0.8	Horizontal dilution of precision, (00.0 ~ 99.9)
9	Altitude	108.2	mean sea level (geoid), (-9999.9 ~ 17999.9)
10	Geoidal Separation	21.3	Geoidal Separation in meters
11	Age of Differential	0000	Age of Differential GPS data
	GPS data	_	NULL when DGPS not used

12	DGPS Station ID	0000	Differential reference station ID, 0000 ~ 1023
13	Checksum	02	

GLL – Latitude/Longitude

Latitude and longitude of vessel position, time of position fix and status.

Structure:

\$--GLL,ddmm.mmmm,a,dddmm.mmmmm,a,hhmmss.sss,A,a*hh<CR><LF>

1 2 3 4 5 678

Example:

\$GNGLL,2447.09495,N,12100.52235,E,112609.932,A,A*57<CR><LF>

Field	Name	Example	Description
1	Latitude	2447.09495	Latitude in ddmm.mmmmm format
			Leading zeros transmitted
2	N/S Indicator	N	Latitude hemisphere indicator
			'N' = North
			'S' = South
3	Longitude	12100.52235	Longitude in dddmm.mmmmm format
			Leading zeros transmitted
4	E/W Indicator	E	Longitude hemisphere indicator
			'E' = East
			'W' = West
5	UTC Time	112609.932	UTC time in hhmmss.sss format (000000.000 ~
			235959.999)
6	Status	A	Status, 'A' = Data valid, 'V' = Data not valid
7	Mode Indicator	A	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
8	Checksum	57	

GSA – GNSS DOP and Active Satellites

GNSS receiver operating mode, satellites used in the navigation solution reported by the GGA or GNS sentence and DOP values.

Structure:

Example:

\$GNGSA,A,3,05,12,21,22,30,09,18,06,14,01,31,,1.2,0.8,0.9*36<CR><LF>\$GNGSA,A,3,69,70,73,79,80,,,,,,1.2,0.8,0.9*3C<CR><LF>

Field	Name	Example	Description
1	Mode	A	Mode
			'M' = Manual, forced to operate in 2D or 3D mode
			'A' = Automatic, allowed to automatically switch
			2D/3D
2	Mode	3	Fix type
			1 = Fix not available
			2 = 2D
			3 = 3D
3	Satellite used 1~16	05,12,21,22,30	Satellite ID number, 01 ~ 32 are for GPS; 33 ~ 64
		,09,18,06,14,0	are for WASS(PRN minus 87); 193 ~ 197 are for
		1,31,,	QZSS; 65 ~ 96 are for GLONASS(GL PRN); 01 ~
			36 are for Galileo(GA PRN). Maximally 12
			satellites are included in each GSA sentence.
4	PDOP	1.2	Position dilution of precision (00.0 to 99.9)
5	HDOP	0.8	Horizontal dilution of precision (00.0 to 99.9)
6	VDOP	0.9	Vertical dilution of precision (00.0 to 99.9)
7	Checksum	36	

GSV - GNSS Satellites in View

Number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value. Four satellites maximum per transmission.

Structure:

Example:

\$GPGSV,4,1,16,05,54,069,45,12,44,061,44,21,07,184,46,22,78,289,47*72<CR><LF>
\$GPGSV,4,2,16,30,65,118,45,09,12,047,37,18,62,157,47,06,08,144,45*7C<CR><LF>
\$GPGSV,4,3,16,14,39,330,42,01,06,299,38,31,30,256,44,32,36,320,47*7B<CR><LF>
\$GPGSV,4,4,16,42,64,169,45,50,74,261,44,21,07,184,46,193,68,189,47*72<CR><LF>

Field	Name	Example	Description
1	Number of message	4	Total number of GSV messages to be transmitted
			(1-4)
2	Sequence number	1	Sequence number of current GSV message
3	Satellites in view	16	Total number of satellites in view (00 ~ 16)
4	Satellite ID	05	Satellite ID number, 01 ~ 32 are for GPS; 33 ~ 64
			are for WASS(PRN minus 87); 193 ~ 197 are for
			QZSS; 65 ~ 96 are for GLONASS(GL PRN); 01 ~
			36 are for Galileo(GA PRN). Maximally 4 satellites
			are included in each GSV sentence.
5	Elevation	54	Satellite elevation in degrees, (00 ~ 90)
6	Azimuth	069	Satellite azimuth angle in degrees, (000 ~ 359)
7	SNR	45	C/No in dB (00 ~ 99)
			Null when not tracking
8	Checksum	72	

RMC - Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver.

Structure:

\$--RMC, hhmmss.sss, A, dddmm.mmmmm, a, x.x, x.x, ddmmyy, ,, a*hh < CR > < LF > (A) A constant of the constan

1 2 3 4 5 678 9 10 11

Example:

\$GNRMC,111636.932,A,2447.09495,N,12100.52235,E,000.0,000.0,030407,,,A*61<CR><LF>

Field	Name	Example	Description
1	UTC time	0111636.932	UTC time in hhmmss.sss format (000000.000 ~
			235959.999)
2	Status	Α	Status
			'V' = Navigation receiver warning
			'A' = Data Valid
3	Latitude	2447.09495	Latitude in dddmm.mmmmm format
			Leading zeros transmitted
4	N/S indicator	N	Latitude hemisphere indicator
			'N' = North
			'S' = South
5	Longitude	12100.52235	Longitude in dddmm.mmmmm format
			Leading zeros transmitted
6	E/W Indicator	E	Longitude hemisphere indicator
			'E' = East
			'W' = West
7	Speed over ground	0.000	Speed over ground in knots (000.0 ~ 999.9)
8	Course over ground	000.0	Course over ground in degrees (000.0 ~ 359.9)
9	UTC Date	030407	UTC date of position fix, ddmmyy format
10	Mode indicator	Α	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
11	checksum	61	

VTG - Course Over Ground and Ground Speed

The Actual course and speed relative to the ground.

Structure:

Example:

\$GNVTG, 000.0,T,,M,000.0,N,0000.0,K,A*3D<CR><LF>

Field	Name	Example	Description
1	Course	000.0	True course over ground in degrees (000.0 ~ 359.9)
2	Speed	000.0	Speed over ground in knots (000.0 ~ 999.9)
3	Speed	0000.0	Speed over ground in kilometers per hour (0000.0 ~
			1800.0)
4	Mode	А	Mode indicator
			'N' = not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
5	Checksum	3D	

ZDA – Time & Date

UTC, day, month, year and local time zone.

Structure:

\$--ZDA, hhmmss.sss, xx, xx, xxx, xx, xx, xx*hh < CR > < LF >

1 2 3 4 5 6 7

Example:

\$GPZDA,052633.376,13,07,2012,00,00*51<CR><LF>

Field	Name	Example	Description
1	UTC time	0111636.932	UTC time in hhmmss.sss format (000000.000 ~
			235959.999)
2	Day	13	Day, 01 to 31
3	Month	07	Month, 01 to 12
4	Year	2012	Year in yyyy format
5	Local zone hours	00	Local zone hours, 00 to +/- 13 hrs
6	Local zone minutes	00	Local zone minutes, 00 to +59
7	checksum	51	

Contact Information Section

Contact : knc3@knctek.co.kr

Web Site: www.knctek.co.kr

Headquarter:

6F03, Ace High-End Tower 6th, 60-25, Gasan-dong, Geumcheon-gu SEOUL, KOREA TEL: 82-2-839-5701

FAX: 82-2-830-5703